

Pilot study site of Black river hydrographic basin – results and measures –

Florian Bodescu

CAMARO-D PILOT SITES

💽 SWAT | Soil & Wate...

Afișați-le pe toate

へ 🗒 🖵 🖾 🬈 句》) 🔥 ROU 04,04,2019

Program

Ŧ

swat-io-document....pdf

~

9

55575805_397090....jpg

Total Commander (...

~

-

55892353_397091....jpg ^

((0))

QUESTIONS

- Regional to local influences:
 - Climate change will have an negative impact on human wellbeing in the Black river hydrological basin?
 - What is the effectiveness of counter measures on climate change negative impact?
- Local to regional influences:
 - Socio-economical systems sustainable development and beaver conservation measures can be applied in the same space?
 - What is the effectiveness of human-beaver conflicts mitigation measures?

DIMEN

METHODOLOGICAL APPROACH

Eco-hydrological models scenarios

- 1. Scenarios class 1
- 1.1. Reference temporal scale: 2000-2013
- 1.2. Characterization of ecosystems functioning on reference period
- 1.3. Calibration and validation models based on actual monitoring data on water quantity and quality parameters
- 2. Scenarios class 2
- 2.1. Testing short term changes: 2015-2018
- 2.2. Characterization of actual response on water quantity and quality of calibrated model

2.3. Short term changes comparative analysis between scenarios 1 and 2

Eco-hydrological models scenarios

3.	Scenarios class 3						
3.1.	Medium term land use change: 2025-2028						
3.2.	Implementation of BMP for improvement in						
water quantity and quality and also habitat conservation							
4.	Scenarios class 4						
4.1.	Long term climate change: 2041-2043, 2065-						
2068							
4.2.	Analysis of climate change scenarios at						
	· · · · · · · · · · · · · · · · · · ·						

catchment scale

4.3. Cumulative effects of climate and land use change in a Black river hydrographic basin

MULTIDIMENSION research & development

- 75 subcatchments
- 16 land use types
- 12 soil types

ΜΕΤΕΟ

Precipitation amount Green – low Red - high

Surface water amount Green – low Red - high

WYLD

Green - low

Red - high

Programme co-funded by the European Union (ERDF, IPA)

MULTIDIMENSION research & development

PELE ROMÂNE

Water quality - nutrients (S1)

Organic N Green - low Red - high

Organic P Green - low Red - high NO3 conc Green - low Red - high

Total N Green - low Red - high

DIMENSIO

Scenario development

Best Management Practices:

- Restoration of wetlands (water retention, peak flow reduction)
- Permanent grassland (improved sil properties on slopes)
- Riparian strips (forested buffer strips)
- Grassland buffers (additional to forested buffer strips)

Stage 1 (from present to 2028):

- Re-establishment of wetlands (1608 ha)
- Transforming arable lands of steep slopes (>11°) to grasslands (2517 ha)
- Establishment of riparian forest strips (50m from midstream) in parts of the river (from source to Sânzieni, 334 ha)

h & development

Stage 2 (2028 - 2043):

 Continued establishment of riparian forest strips (50m from midstream) extended to the whole of the river (6031 ha)

Stage 3 (2043 - 2068):

 Establishment of grassland buffers (additional 100m outside of riparian forests, 5939 ha)

PELE ROMÂNE

Input data for scenarios 3

• **PP05 - HOI** - selection of BMP and induced land use changes to improve water quality and habitat conservation

CLC code	2012	2028	2043	2068	CLC description
112	3.51%	0.00%	0.00%	0.00%	Discontinuous urban
121	0.12%	0.00%	0.00%	0.00%	Industrial and comercial
142	0.02%	0.00%	0.00%	0.00%	Sport and leisure facilities
211	26.79%	-1.23%	-3.58%	-5.98%	Non-irrigated arable land
221	0.02%	0.00%	0.00%	0.00%	Vineyards
222	0.07%	0.00%	0.00%	0.00%	Fruit trees and berry plantations
231	13.46%	0.41%	0.41%	2.94%	Pastures
242	0.94%	-0.16%	-0.38%	-0.51%	Complex cultivation patterns
					Land principally occupied by agriculture, with significant
243	1.23%	-0.49%	-0.49%	-0.49%	areas of natural vegetation
311	26.77%	0.03%	2.60%	2.60%	Broad-leaved forest
312	10.91%	0.10%	0.10%	0.10%	Coniferous forest
313	10.59%	0.00%	0.00%	0.00%	Mixed forest
321	2.65%	0.62%	0.62%	0.62%	Natural grassland
322	0.28%	0.01%	0.01%	0.01%	Moors and heatland
324	2.41%	0.02%	0.02%	0.02%	Transitional wood-shrub
411	0.00%	0.68%	0.68%	0.68%	Inland marshes
511	0.14%	0.00%	0.00%	0.00%	Water courses
512	0.09%	0.00%	0.00%	0.00%	Water bodies

PELE ROMANE

Input data for scenarios class 4

• PP08 - NMA -

climatic change scenarios selection and extraction 12x12 km resolution

- EURO-CORDEX hist 1970-2006
- EURO-CORDEX RPC45 2006-2100
- EURO-CORDEX RPC85 2006-2100

average

~5% of water availability decrease in 50 years

Results

Lucal assessment of beaver management plan

- SWOT analysis:
 - O1. Maintaining a viable population with favorable conservation status for ROSCI0374 and ROSCI0111
 - O2. Maintaining components of unmanaged water resource management infrastructure for local social and economic protection
 - O3. Control of dispersion in critical areas through authorized bodies for the relocation of individuals
 - O4. Testing of the methods of protection of the infrastructure elements by technical measures (antilawn nets, target arbors fences, electric fences for crops)

SWOT analysis

research & development

	Strengths	Weakness	Opportunities	Threats
D1. Maintaining a viable population with avorable conservation status for ROSCI0374 and ROSCI0111	 Classification of riparian habitats according to the risk of conflicts occurring Involvement of INCDS critical conservative interest areas ROSCI0111 and ROSCI0374 	 Harmonization of legislation; Actualizarea măsurilor de management 	 Periodic reassessment of population; Identifying habitats that can be re-populated in INCDS 	 Damage to crops, 98%, small amounts Flooding of land Damage to roads, bridges, dikes
D2. Maintaining components of unmanaged water resource management nfrastructure for local social and economic protection	 Active management for elements of infrastructure Identification of the elements of critical infrastructure 	 Investments additional cost 	 Testing of technical methods in experimental system Identify areas with potential conflict risk SGA 	 Beaver dams (blockages in the bed) The nests in the dykes
D3. Control of dispersion in critical areas hrough authorized bodies for the elocation of individuals	 Immediate relocation for conflict prevention 	 Harmonization of legislation 	 Authorization of APM-SGA- INCDS direct cooperation 	 Juvenile dispersal upstream
D4. Testing of the methods of protection of the infrastructure elements by technical measures (anti-lawn nets, target ences, electric fences for crops) Programme co-funded by the Eur	 Good results can be replicated ropean Union (ERDF, IPA) 	Additional cost	 Testing of technical methods in experimental system by CAMARO-D Identification of areas with potential conflict risk SGA- INCDS 	Socio-economic conflicts

Beaver habitat assessment

Lemnia local habitat assessment

Castor fiber influences

Ecosystem services	Influences			
Surface water availability	• Water retention at local level			
Sub-surface water availability	• Water sub-surface lateral flow at local level			
Water quality	 Sediment trap function of beaver dam Nutrient retention 			
Biodiversity maintenance	 Community interest species conservation Trees and shrubs thickening 			

APELE ROMÂNE

Clusters groups of Danube sub-catchments

22% plains (cluster 6) and 9% hills (cluster 8) sub-catchments of Black River

BMPs from HOI extrapolation

 If we are extending the BMPs to Danube floodplain we will obtain 42% from the surface of Danube basin can benefit from the same BMPs like Black river basin

Many thanks for your attention!

- Florian Bodescu
- office@multidimension.ro

